Circutor

The Future is Efficiency

Pere Soria Alcazar

AUVE

Mejorar la eficiencia energética

 en tu sector
49 Años liderando la

Soluciones integrales para la eficiencia energética aplicables en un grañ número de sectores: generación, industria, sector terciario e incluso
domèstico. Estamos presentes de principio a fin.

4

Industria

Terciario, edificios e infraestructuras
$((p))$
Telecomunicaciones e instalaciones críticas
-
Compañías eléctricas
$\#$
Plantas fotovoltaicas

Movilidad eléctrica
\boxplus
Autoconsumo de energia

Mercado actual de PEV

Plug-In Electric Car Sales More Than Doubled In March 2022

Mercado actual de PEV

Tesla Model 3 Was \#1 Most Registered Vehicle Overall In March 2022

Mercado actual de PEV

Global Plug-In Electric Car Sales Increased 60\% In March 2022

Mercado actual de PEV

Mercado actual de PEV

World's Top 10 Plug-In Car Brands
(Jose Pontes / EV Volumes data)
310411
285849

InsIDEEVs

Recarga inteligente para vehículos eléctricos 02

Una solución de recarga para cada necesidad

Modos de recarga y tipos de conectores

En el proceso de recarga de un vehículo eléctrico se pueden distinguir diferentes niveles de comunicación entre el vehículo eléctrico y la infraestructura de recarga, que se denominan "Modos de recarga" basados en la Norma IEC-61851-1

Modo 4

Conexión indirecta
del vehículo a la red a través de
cargador externo.
>Toma externa de corriente directa con monitorización de carga
> Cable dedicado
Tipo de carga
En CC
Corriente máxima
Según cargador
Protecciones
Instaladas en la infraestructura

Características especiales
Conexión del VE utilizando un cargador externo fijo

Modo de carga Norma IEC-61851-1

Tipo de carga AC

Lado Vehículo eléctrico Toma especifica de VE (AC)

Lado Infraestructura
Punto de recarga AC
Cable
Solidario al punto de recarga o
Externo
Potencia máxima
$7,4 \mathrm{~kW}$ (Tipo 1)
43 kW (Tipo 2)
Protecciones
Externas o integradas
Uso
Recarga habitual de VE

0

Modo de carga Norma IEC-61851-1

0

Tipos de conectores

Los dos conectores de AC más utilizados en Norte América y Japón son el Tipo1, en China el GB/T y en Europa y en el resto de mercados el Tipo2 / Mennekes.

Conectores de AC
N. America

J1772 (Type 1)

Japan

EU and the rest of markets

Mennekes (Type 2)

China

Tipos de conectores

Los dos conectores de DC más utilizados en Norte América el CCS1 y en Japón el CHADEMO, en China el GB/T y en Europa y el en resto de mercados el CCS2.

Conectores de DC

N. America

 CCS1

China

GB/T

Protocolo abierto para puntos de recarga ОСРР

OPEN CHARGE ALLIANCE, GLOBAL PLATFORM FOR OPEN PROTOCOLS

The Open Charge Alliance (OCA) is a global consortium of public and private electric vehicle infrastructure leaders that have come together to promote open standards through the adoption of the Open Charge Point Protocol (OCPP) and the Open Smart Charging Protocol (OSCP).

- Both SOAP and JSON versions
- Smart Charging support for load balancing and use of charge profiles
- (Local) list management support
- Additional status

Plataformas de recarga

Es posible integrar cargadores de cualquier marca en las plataformas que nos permiten localizar los puntos de recarga gracias al protocolo OCPP

Real Decreto 1053/2014, la ITC-BT-52

RD 1053/2014 \& ITC-BT-52

El 31 de diciembre de 2014 fue publicado en el BOE el Real Decreto 1053/2014, con el que se aprueba la ITC-BT-52 sobre infraestructuras para la recarga de vehículos eléctricos.

Ley de Propiedad Horizontal 19/2009:
Si se tratara de instalar en el aparcamiento del edificio un punto de recarga de VE para uso privado, siempre que éste se ubicara en una plaza individual de garaje, sólo se requerirá la comunicación previa a la comunidad de que se procederá a su instalación.

Esquema 2: Instalación Individual

Contador Principal común para la vivienda y para la estación de recarga.
¡Importante la invisibilidad del contador!

ITC-BT-52: Protección diferencial

- Cada punto de Recarga deberá protegerse individualmente mediante un dispositivo de protección diferencial de 30 mA - Tipo A.
- Los dispositivos de protección diferencial para los puntos de Recarga VE en la Vía Publica estarán preparados para añadir Rearme Automático

ITC-BT-52: Sobretensiones y armónicos

Es preceptiva la instalación de sobretensiones permanentes y transitorias.
"En instalaciones para la recarga de vehículo eléctrico, con más de 5 estaciones de recarga, el proyectista estudiará la necesidad de instalar filltros de corrección de armónicos, para mantener la distorsión armónica de tensión en los límites característicos de la tensión suministrada por las redes generales de distribución."

En instalaciones complejas, Circutor recomienda equipar la instalación con un analizador de redes que proporcione toda la información en tiempo real.

eHOME

Punto de recarga destinado a párkings privados, viviendas y soluciones simples en comunidades de vecinos.

Indicador luminoso de estado de carga
Azul, verde y rojo.

Recarga en Modo 3
Gestión de la recarga en AC.

Potencia máxima ajustable
Mediante un selector interno es posible ajustar la potencia máxima de carga.

CirBEON regulable en placa

Permite ajustar la intensidad máxima desde la placa de control.

W Dos potencias de salida
Monofásico 32A, 7,4kW. Trifásico 16A, 11kW.

Disponibles con tres tipos de toma
Tipo I SAE J1772, Tipo II Mennekes y base T2.
@ EXT Con un diseño moderno y minimalista, la nueva gama eNext se plantea como la mejor opción de recarga para interior.
(2) Recarga en Modo 3

Gestión de la recarga en AC.
W Dos potencias de salida
Monofásico 32A, 7,4kW. Trifásico 32A, 22kW.

Potencia máxima ajustable
Configurable mediante APP.
AC

Indicador luminoso de estado de carga

Azul, verde y rojo.
'O: CirBEON regulable en placa
Permite ajustar la intensidad máxima desde la placa de control.

eNEXT
 Todas las prestaciones de la eNEXT y además!

ELITE

Circutor

a 0.02 cm

国 Pantalla a color
Muestra las instrucciones mediante imágenes, así como el tiempo de la recarga en curso y la potencia y energía suministradas.

Detección fugas de 6 mAcc
Sólo será necesario instalar un interruptor diferencial Tipo A para adecuarse a las directrices europeas.
[\int_{\square} Contador de energía
Contador MID para facturación de la energía.

Versión OCPP 1.6J.

Wifi

Permite conectar el cargador a una red
Wi-Fi existente evitando así la
necesidad de cablear comunicaciones.

CIRBEON

El sistema constituido por una caja de recarga y el dispositivo CirBEON (transformador de corriente) forman un conjunto que permite optimizar la carga del Vehículo Eléctrico (VE). El dispositivo es responsable de medir el consumo total de la vivienda y destinar la potencia disponible para la carga del VE, evitando así los posibles disparos de los sistemas de protección por sobreconsumo.

URBAN

Para topo tipo de entornos con acceso al público que se quiera dar un servicio de recarga: Centros comerciales, hoteles, empresas, ayuntamientos, vỉa pública, etc.

AC

Indicador luminoso de estado Azul, verde y rojo.

Recarga en Modo 3 Gestión de la recarga en AC.
[8] Display alfanumérico
Indicaciones de utilización, medida de energía, data server, etc.
min Comunicaciones Ethernet

W Potencia ajustable
Potencia máxima 22 kW .

Protecciones integradas
Protección magnetotérmica y diferencial Tipo A o B según modelo.
\%) Disponibles con tres tipos de toma Schuko, Tipo II Mennekes y Tipo II con cable.

URBAN

La URBAN es un equipo diseñado para ser instalado en vía publica, tiene un grado IP54 y IK10.

RAPTION
 Para todo tipo de entornos con acceso al público donde el vehículo precise de una recarga rápida: Carsharing, electrolineras, flotas de 50 vehículos, aeropuertos, etc.

Indicador de estado de carga
Azul, verde y rojo.
W Potencia de salida
Hasta 43 kW AC y 50 kW DC.

Recarga en Modo 3 y modo 4 Gestión de la recarga en AC y en DC.

Luces de cortesía
Permite iluminar el área de recarga

Tres tipos de conectores
CHAdeMO, CCS Combo2 y Tipo 2 en corriente alterna.

Sistema modular de potencia
El cargador dispone de distintos módulos de potencia con un rendimiento del 94\%

R50: Características funcionales

Interfaz gráfica
La estación RAPTION tiene una pantalla de 8" robusta con protección IK10 en la que se pueden consultar las instrucciones de carga, el estado del cargador (disponible, reservado...), gráficas indicadoras de la carga.
Todo disponible en 12 idiomas.

R50: Características funcionales

Ventilación lateral
Al equipar la ventilación por la parte lateral RAPTION ocupa menos espacio y permite la fijación en la pared.

Anclaje de seguridad
EI RAPTION50 dispone de un bloqueo de las mangueras que evita su deterioro frente a actos vandálicos.

Evolución de la familia de cargadores RAPTION

El nuevo cargador RAPTION150 se integrará en la misma envolvente que el RAPTION50 pero aumentando la profundidad para poder integrar los 6 módulos de 25 kW .

RAPTION50

RAPTION100

RAPTION150

RAPTION 150

150 kW (920 V - 250 A)
Nuevo cargador ultrarrápido preparado para cualquier VE.
$\Rightarrow \hat{O}_{\uparrow} \leqslant$ Formato compacto
En una sola envolvente se incluye tanto la etapa de potencia como el surtidor.

ת Prestaciones R150
Hereda todas las prestaciones existentes de un Raption 150.

Nueva URBAN CCS, cargador de DC

25 kW
Permiten recargas de hasta 25 kW .

Sistema inteligente
El equipo Master ofrece a la instalación todas las prestaciones de un sistema inteligente de recarga.
s
Compatible con otras familias M/S Permite integración con equipos RAPTION así como con cargadores M/S de la serie Urban en AC.

DLM

Dynamic Load Management 03

DLM

¿Cómo proteger los puntos de recarga de VE?

Minimizar la potencia contratada en la instalación, asegurando a la vez un servicio de recarga adecuado.

Optimizar la gestión de potencia disponible en la instalación para recargar el máximo de vehículos en el menor tiempo posible.

Monitorizar en tiempo real el estado de la red de recarga.

Generar informes de consumo mensuales.

Posibilidad de variar la potencia por punto individual de recarga.

DLM

Circutor

Parking DLM

Informes
[0\} Setup DLM
EV-REPORT
Alarmas
E Históricos
Reset

DLNO
SYSTEM

PARKING

Circutor

Ejemplo de DLM

Cosmos

Funcionalidades del Cosmos

Geolocalización de los equipos

$\frac{\text { Informe recarga VE }}{\text { Intomece cis usuaro }}$
 (cemern $==$ Resumen del informe mionn $\mathrm{Mn}_{\mathrm{Mn}}$

Informes económicos

Alarmas instantáneas

Nuevos reports diarios de alarmas de cargadores

Añadir

9
no-reply@cosmos-mobility.com ss 0
Fault detected for charge point Urban M22 Visitas 2

Fault detected for charge point Urban M22 Visitas 2, connector 62196 TYPE 2 - 2. Facility Urban M22 Visitas 2

Comunicación con el conductor

1

```
no-reply@cosmos-mobility.com s& 0
```

Manage your charging session on COSMOS

Your charging session has successfully started.
You can check and manage its status in the following link:
click here

© 62196 TYPE 2 - 1

Consumo
3.72 kwh

Cliente
Pere Soria

Hora inicio Tuesday, 21 de September de 2021, 07:58 Fecha parada
Motivo de la parada
Corriente entrada 0.0 A
Energia activa 3.72 kWh
Potencla activa 0.0 kW

Dear Oihan Goenaga
Your vehicle has charged 1.39 kWh , you can proceed to disconnect and take your vehicle

(2) -2

Futuros desarrollos

RAPTION400

El cargador de 400 kW estará formado por una unidad de potencia. En la fotografía podemos ver los dos racks de 200kW. El dispensador irá con el sistema de refrigeración y la intensidad de mangueras a 400A.

Unidad de potencia

Dispensador

RAPTION400

El cargador de 400 kW estaraformado-por una unidad de potencia. En la fotografía podemos ver los dos racks de 200 kW . El dispensador irá con el sistema de

Experiencias: Electrolineras

En las ciudades se instalarán electrolineras que permitirán la carga rápida del vehículo eléctrico.

Experiencias: Electrolineras

RAPTION150

Primera electrolinera en Estonia, y la recarga de los autobuses turísticos en la ruta de las Ruinas de Petra, en Jordania.

Experiencias: Hubs de recarga

Dundee

Dundee es la perfecta ciudad pequeña para los vehículos eléctricos, y es considerada la ciudad líder de Escocia en la adopción, promoción y operación de vehículos eléctricos

Experiencias: Carga de autobuses

Modo de carga Norma IEC-61851-1

Prestaciones

Certificación y estabilidad

Cumple con el CTE y el Eurocódigo
(incluye cargas climáticas de las Islas Canarias).
Es estable con lo que las cimentaciones/zapatas no tienen que ser muy grandes.
Normativa europea:
Eurocódigo 0, 1 y 3.
Normativa española equivalente:
Código Técnico de la Edificación.
DB-SE-SE
DB-SE-AE
DB-SE-A

Fácil montaje mecánico de los módulos FV.
No se precisa de línea de vida, puede hacerse el montaje desde debajo mediante un andamio o tijera.
Compatibilidad con módulos de dimensiones 60 células.

Cimentaciones prediseñadas

Las plantillas para hacer las cimentaciones son suministradas para que encajen perfectamente con la marquesina durante el montaje.

Canalización de todo el cableado

El cableado de los módulos FV es conducido por el interior de la marquesina pudiéndose manipular fácilmente a través de registros quedando oculto y protegido.

Impermeabilidad

No todas las marquesinas solares contemplan este punto, pero la marquesina CIRCUTOR dispone del juego de perfilería adecuado para recoger, conducir, el agua y evitar filtraciones.

Integración del cargador de vehículo eléctrico Es la única marquesina que tiene prevista la integración del cargador de coche eléctrico en su estructura primaria.

Impacto estético

Aunque subjetivo, el diseño de la marquesina CIRCUTOR ha cuidado sus proporciones y definición formal para desmarcarse de la estética industrial que desprenden el resto de marquesinas diseñadas con perfiles normalizados IPE.
Color RAL de pintura personalizable.

Integración recarga VE: Modelos PVS2-R

Diseño estructural para integración URBAN PVS. Registro lateral para incorporar equipos de protección / potencia.

0

Marquesina PVS2 BEJAR

Localización: Bejar, Salamanca (Albergue municipal) Potencia instalada: 37,8 kWp Configuración: PVS2 C18PS (45m / 7 pies) - 135 módulos FV

Marquesina PV4-Vilamalla

Localización: Vilamalia, Gerona (Indústria alimentaria) Potencia instalada. $97,2 \mathrm{~kW} / \mathrm{p}$ Configuración:PV4 C48PD (60 m) - 360 módulos FV Recarga RVE: $1 \times$ Poste externo URBAN T22

circutor.com
 y © in f

